女人被暴躁C到高潮容易怀孕吗_国产成人精品一区二区三区视频_国产欧美日韩_德国FREE性VIDEO极品

圖拉揚科技
免費會員
折光儀/折射儀
熔點測試儀
應力儀
旋光儀
振蕩器、搖床
生物顯微鏡
分析天平
離子色譜儀
粉碎儀
X熒光光譜儀
微波消解儀/萃取儀
表面張力儀
酶標儀
洗板機
固相萃取儀
動物呼吸機/麻醉機
細胞破碎儀
細胞融合儀
混勻器
血壓,生物學功能
裂隙燈顯微鏡
超低溫冰箱
行為學,條件作用,迷宮
動物代謝,攝食行為
葉面積儀
植物光合儀
葉綠素儀
植物冠層分析儀
莖桿強度測定儀
葉片溫差儀
植物效率儀
輻射檢測儀
濁度儀
顆粒物分析儀
澄明度檢測儀
片劑厚度儀
凍力測試儀
勃氏粘度計
片劑多用測定儀
藥物融變時限儀
溶出度儀
明膠透明度測定儀
藥物透皮擴散試驗儀
熱源測溫儀
細菌內毒素測定儀
微粒檢測儀
膏藥軟化點測定儀
氮吹儀
運動協調,抓力測試,活動性
顯微鏡載物臺
水果無損分析儀
粉質分析儀
定氮儀
脂肪測定儀
消解儀
纖維測定儀
液相色譜儀
ATP熒光檢測儀
乳品分析儀
粉末性能測試儀
密度計/密度儀
農藥殘留檢測儀
脆碎度測定儀
片劑硬度儀
霉菌毒素測定儀
消化爐
水分活度儀
獸藥殘留檢測儀
食品安全檢測儀
農產品質量安全檢測儀
色度計
厭氧工作站
磁力攪拌器
紫外可見分光光度計
分光光度計
色差儀
紅外水分測定儀
蠕動泵
疼痛,炎癥
測汞儀
原子吸收光譜儀
電泳儀/電泳槽
凝膠成像系統
PCR儀
紫外分析儀
毛細管電泳
極譜儀/伏安儀
微量水分儀
旋轉蒸發儀
粘度計
真空泵
水浴/油浴/金屬浴
氣體檢漏儀
流變儀
微生物采樣器
激光粒度儀
氫氣發生器
氣相色譜儀
卡爾·費休水分儀
崩解儀
滴定儀
PH酸度計
熒光分光光度計
紅外分光光度計
滅菌器/滅菌箱

Cyranose320電子鼻技術用于藍莓病害檢測和分類

時間:2020/12/25閱讀:305
分享:
  Gas sensor array for blueberry fruit disease detection and classification
 
  電子鼻技術用于藍莓病害檢測和分類Changying Li a,∗, Gerard W. Krewerb, Pingsheng Ji c, Harald Schermd, Stanley J. Kayse
 
  a University of Georgia, Department of Biological and Agricultural Engineering, 2329 Rainwater Road, Tifton, GA 31794, USA
 
  b University of Georgia, Department of Horticulture, 4604 Research Way, Tifton, GA 31794, USA
 
  c University of Georgia, Department of Plant Pathology, 115 Coastal Way, Tifton, GA 31794, USA
 
  d University of Georgia, Department of Plant Pathology, 2311 Miller Plant Sciences Bldg., Athens, GA 30602, USA
 
  e University of Georgia, Department of Horticulture, 1111 Miller Plant Sciences Bldg., Athens, GA 30602, USA
 
  a b s t r a c t
 
  A conducting polymer gas sensor array (electronic nose Cyranose 320) was evaluated for detecting and classifying three common postharvest diseases of blueberry fruit: gray mold caused by Botrytis cinerea, anthracnose caused by Colletotrichum gloeosporioides, and Alternaria rot caused by Alternaria sp. Samples of ripe rabbiteye blueberries (Vaccinium virgatum cv. Brightwell) were inoculated individually with one of the three pathogens or left non-inoculated, and volatiles emanating from the fruit were assessed using the gas sensor array 6–10 d after inoculation in two separate experiments. Principal component analysis of volatile profiles revealed four distinct groups corresponding to the four inoculation treatments. MANOVA, conducted on profiles from individual assessment days or from combined data, confirmed that the four treatments were significantly different (P < 0.0001). A hierarchical cluster analysis indicated two super-clusters, i.e., control cluster (non-inoculated fruit) vs. pathogen cluster (inoculated fruit). Within the pathogen cluster, fruit infected by B. cinerea and Alternaria sp. were more similar to each other than to fruit infected by C. gloeosporioides. A linear Bayesian classifier achieved 90% overall correct classification for data from experiment 1. TenaxTM trapping of volatiles with short-path thermal desorption and quantification by gas chromatography–mass spectrometry was used to characterize volatile compounds emanated from the four groups of berries. Six compounds [styrene, 1-methyl-2-(1-methylethyl) benzene, eucalyptol, undecane, 5-methyl-2-(1-methylethyl)-2-cyclohexen-1-one, and thujopsene] were identified as contributing most in distinguishing differences in the volatiles emanating from the fruit due to infection. A canonical discriminant analysis model using the relative concentration of each of these compounds was developed and successfully classified the four categories of berries. This study underscores the potential feasibility of using a gas sensor array for blueberry postharvest quality assessment and fungal disease detection.
 
  利用導電聚合物氣體傳感器陣列(電子鼻Cyranose320)對藍莓果實采后常見的三種病害進行了檢測和分類:灰霉病、炭疽病、交鏈孢霉引起的炭疽病、成熟的兔眼藍莓(牛痘)樣品的交鏈孢腐爛病。Um Virgatum。Brightwell)分別接種三種病原體中的一種或不接種,在兩個單獨的實驗中,接種后6-10 d用氣體傳感器陣列評估從水果中釋放的揮發物。揮發性成分分析顯示四個不同的組分與四種接種處理相對應。Manova對個體評估日或綜合數據的資料進行分析,證實四種治療方法有顯著差異(p<0.0001)。層次聚類分析顯示兩個超級聚類,即控制聚類(未接種的果實)與病原聚類(接種的果實)。在病原菌群中,灰霉病和交鏈孢桿菌侵染的果實比灰霉病侵染的果實更為相似。線性貝葉斯分類器對實驗1的數據實現了90%的整體正確分類。采用短程熱解吸和氣相色譜-質譜定量法對四組漿果揮發物的Tenaxtm捕集進行了表征。6種化合物[苯乙烯、1-甲基-2-(1-甲基乙基)苯、桉樹醇、十一烷、5-甲基-2-(1-甲基乙基)-和thujopsene]被鑒定為助于區分由感染引起的水果揮發物差異。建立了一個基于上述化合物相對濃度的典型判別分析模型,并成功地對四類漿果進行了分類。本研究強調了使用電子鼻進行藍莓采后質量評估和真菌病檢測的潛在可行性。

會員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

X
該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時間回復您~
在線留言