女人被暴躁C到高潮容易怀孕吗_国产成人精品一区二区三区视频_国产欧美日韩_德国FREE性VIDEO极品

圖拉揚科技
免費會員
折光儀/折射儀
熔點測試儀
應力儀
旋光儀
振蕩器、搖床
生物顯微鏡
分析天平
離子色譜儀
粉碎儀
X熒光光譜儀
微波消解儀/萃取儀
表面張力儀
酶標儀
洗板機
固相萃取儀
動物呼吸機/麻醉機
細胞破碎儀
細胞融合儀
混勻器
血壓,生物學功能
裂隙燈顯微鏡
超低溫冰箱
行為學,條件作用,迷宮
動物代謝,攝食行為
葉面積儀
植物光合儀
葉綠素儀
植物冠層分析儀
莖桿強度測定儀
葉片溫差儀
植物效率儀
輻射檢測儀
濁度儀
顆粒物分析儀
澄明度檢測儀
片劑厚度儀
凍力測試儀
勃氏粘度計
片劑多用測定儀
藥物融變時限儀
溶出度儀
明膠透明度測定儀
藥物透皮擴散試驗儀
熱源測溫儀
細菌內毒素測定儀
微粒檢測儀
膏藥軟化點測定儀
氮吹儀
運動協調,抓力測試,活動性
顯微鏡載物臺
水果無損分析儀
粉質分析儀
定氮儀
脂肪測定儀
消解儀
纖維測定儀
液相色譜儀
ATP熒光檢測儀
乳品分析儀
粉末性能測試儀
密度計/密度儀
農藥殘留檢測儀
脆碎度測定儀
片劑硬度儀
霉菌毒素測定儀
消化爐
水分活度儀
獸藥殘留檢測儀
食品安全檢測儀
農產品質量安全檢測儀
色度計
厭氧工作站
磁力攪拌器
紫外可見分光光度計
分光光度計
色差儀
紅外水分測定儀
蠕動泵
疼痛,炎癥
測汞儀
原子吸收光譜儀
電泳儀/電泳槽
凝膠成像系統
PCR儀
紫外分析儀
毛細管電泳
極譜儀/伏安儀
微量水分儀
旋轉蒸發儀
粘度計
真空泵
水浴/油浴/金屬浴
氣體檢漏儀
流變儀
微生物采樣器
激光粒度儀
氫氣發生器
氣相色譜儀
卡爾·費休水分儀
崩解儀
滴定儀
PH酸度計
熒光分光光度計
紅外分光光度計
滅菌器/滅菌箱

Cyranose320電子鼻技術眼部細菌感染分類鑒定研究

時間:2020/12/25閱讀:204
分享:

Bacteria classification using Cyranose 320 electronic nose

Cyranose 320電子鼻技術眼部細菌感染分類鑒定研究


Ritaban Dutta*, Evor L Hines, Julian W Gardner and Pascal Boilot
Address: Division of Electrical and Electronic Engineering, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
: Ritaban Dutta* - r.dutta@warwick.ac.uk; Evor L Hines - e.l.hines@warwick.ac.uk; Julian W Gardner - j.w.gardner@warwick.ac.uk;
Pascal Boilot - P.Boilot@warwick.ac.uk
*Corresponding author

Published: 16 October 2002
BioMedical Engineering OnLine 2002, 1:4
Received: 1 September 2002
Accepted: 16 October 2002
This article is available from: /content/1/1/4
© 2002 Dutta et al; licensee BioMed Central Ltd. This article is published in Open Access: verbatim copying and redistribution of this article are permitted
in all media for any purpose, provided this notice is preserved along with the article's original URL.

Abstract
Background:An electronic nose (e-nose), the Cyrano Sciences' Cyranose 320, comprising an array of thirty-two polymer carbon black composite sensors has been used to identify six species of bacteria responsible for eye infections when present at a range of concentrations in saline solutions. Readings were taken from the headspace of the samples by manually introducing the portable e-nose system into a sterile glass containing a fixed volume of bacteria in suspension. Gathered data were a very complex mixture of different chemical compounds.

背景:電子鼻即Cyrano Sciences公司的Cyranose 320,由32個聚合物-碳黑復合傳感器陣列組成,用于識別6種在鹽水溶液中濃度范圍內導致眼睛感染的細菌。通過手動將便攜式電子鼻系統放入含有固定量懸浮細菌的無菌玻璃中,從樣品的頂部空間讀取讀數。收集到的數據是不同化合物的非常復雜的混合物。


Method: Linear Principal Component Analysis (PCA) method was able to classify four classes of bacteria out of six classes though in reality other two classes were not better evident from PCA analysis and we got 74% classification accuracy from PCA. An innovative data clustering approach was investigated for these bacteria data by combining the 3-dimensional scatter plot, Fuzzy C Means (FCM) and Self Organizing Map (SOM) network. Using these three data clustering algorithms simultaneously better 'classification' of six eye bacteria classes were represented. Then three supervised classifiers, namely Multi Layer Perceptron (MLP), Probabilistic Neural network
(PNN) and Radial basis function network (RBF), were used to classify the six bacteria classes.
Results: A [6 1] SOM network gave 96% accuracy for bacteria classification which was best accuracy. A comparative evaluation of the classifiers was conducted for this application. The best results suggest that we are able to predict six classes of bacteria with up to 98% accuracy with the application of the RBF network.

方法:采用線性主成分分析法(PCA)對六類細菌中的四類進行分類,但實際中,PCA分析的其他兩類細菌分類效果并不明顯,PCA的分類準確率為74%。將三維散點圖、模糊C均值(FCM)和自組織圖(SOM)網絡相結合,研究了一種新的細菌數據聚類方法。同時使用這三種數據聚類算法,可以更好地對六種眼睛細菌進行分類。然后是三個監督分類器,即多層感知器(MLP)、概率神經網絡。采用PNN(PNN)和徑向基函數網絡(RBF)對六種細菌進行分類。結果:采用[6 1]SOM網絡對細菌分類的準確率為96%,是的分類準確率。在此應用中對分類器進行了比較評估。結果表明,應用RBF網絡可以預測六類細菌,準確率高達98%。

Conclusion:This type of bacteria data analysis and feature extraction is very difficult. But we can conclude that this combined use of three nonlinear methods can solve the feature extraction problem with very complex data and enhance the performance of Cyranose 320.

結論:這類細菌的數據分析和特征提取非常困難。但是,我們可以得出結論,將三種非線性方法結合使用,可以解決數據非常復雜的特征提取問題,并提高Cyranose 320的性能。

 

 

 

會員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

X
該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時間回復您~
在線留言