GMS150高精度氣體調控系統可以將多4種不同氣體進行精確混合。每路輸入氣體的流量使用熱式質量流量計精確測量,并由內置的質量流量控制器進行精準控制,輸出的是*混合的均質氣體。氣體輸入輸出使用Prestolok快速安全接頭,保證使用過程中的便捷性與安全性。
GMS150高精度氣體調控系統可用于二氧化碳、氮氣、一氧化碳、甲烷、氨氣以及其他氣體的濃度控制。
GMS150高精度氣體調控系統分為GMS150版和GMS150-MICRO版,其中GMS150版精度更高,GMS150-MICRO版可調控流速更大。
應用領域:
?與植物培養箱、光養生物反應器等聯用,進行精確氣體控制培養
?模擬不同CO2濃度環境,研究溫室效應對植物/藻類的影響
?研究CO2濃度與光合作用的關系
?模擬煙氣等有害氣體對植物/藻類的影響
?研究植物/藻類對有害氣體的處理與利用
技術參數:
?測量原理:熱式質量流量測量法
?可調控氣體:空氣、氮氣、二氧化碳、氧氣、一氧化碳、甲烷、氨氣等干燥純凈、無腐蝕性、無爆炸性氣體,氣源需用戶自備
?調控通道:標配為2通道,通道1為Air-N2,通道2為CO2,多可擴展為4通道
?工作溫度:15-50℃
?輸入/輸出接頭:Parker Prestolok接頭(6mm)
?輸入壓力:3-5bar
?密封:氟化橡膠
?顯示屏:8×21字符液晶顯示屏
?尺寸:37cm×28×15cm
?供電:115-230V交流電
?可聯用儀器:FMT150藻類培養與在線監測系統、MC1000 8通道藻類培養與在線監測系統、FytoScope系列智能LED光源生長箱、用戶自行設計的培養箱或反應器(可提供氣路連接方案)等
與FMT150藻類培養與在線監測系統聯用的GMS150 | 與FytoScope智能LED光源生長箱聯用的GMS150 |
與中科院海洋所自行設計的培養裝置聯用的GMS150 | |
GMS150版調控參數:
?小流量范圍:0.02 - 1 ml/min
?大流量范圍:20 - 1000 ml/min
?可定制流量范圍:可在大流量和小流量之間定制。標準配置通道1(Air-N2): 20-1000 ml/min;通道2(CO2): 0.4-20 ml/min;可調控CO2濃度0.04% - *(實際調控濃度與流量有關)
?精度:±0.5%,加全量程±0.1%(3-5ml/min為全量程±1%,<3ml/min為全量程±2%)
?穩定性:<全量程±0.1%(參考1ml/min N2)
?穩定時間:1~2s
?預熱時間:30min預熱達到精度,2min預熱偏差±2%
?溫度靈敏度:<0.05%/℃
?壓力靈敏度:0.1%/bar(參考N2)
?姿態靈敏度:1bar 壓力下與水平面保持90°大*.2%(參考N2)
?重量:7kg
GMS150-MICRO版調控參數:
?小流量范圍:0.2 - 10 ml/min
?大流量范圍:100 - 5000 ml/min
?可定制流量范圍:可在大流量和小流量之間定制。標準配置通道1(Air-N2): 40-2000 ml/min;通道2(CO2): 0.8-40 ml/min;可調控CO2濃度0.04% - *(實際調控濃度與流量有關)
?精度:±1.5%,加全量程±0.5%
?重復性:流量<20 ml/min為全量程±0.5%,流量>20 ml/min為實際流量±0.5%
?穩定時間:1s
?預熱時間:30min預熱達到精度,2min預熱偏差±2%
?溫度靈敏度:零點<0.01%/℃,滿度<0.02%/℃
?姿態靈敏度:1bar 壓力下與水平面保持90°大*.5 ml/min(參考N2)
?重量:5kg
應用案例:
與FMT150藻類培養與在線監測系統聯用研究藍藻Cyanothece sp. ATCC 51142 的超日代謝節律(Cerveny, 2013, PNAS)
產地:歐洲
參考文獻:
1.Strenkert D, et al. 2019. Multiomics resolution of molecular events during a day in the life of Chlamydomonas. PNAS, 116 (6): 2374-2383
2.Suka?ová K, et al. 2019. Optimization of microalgal growth and c*tion parameters for increasing bioenergy potential: Case study using the oleaginous microalga Chlorella pyrenoidosa Chick (IPPAS C2). Algal Research 40: 101519
3.Cordara A, et al. 2018. Analysis of the light intensity dependence of the growth of Synechocystis and of the light distribution in a photobioreactor energized by 635 nm light. PeerJ, 6:e5256, DOI 10.7717/peerj.5256
4.Cordara A, et al. 2018. Response of the thylakoid proteome of Synechocystis sp. PCC 6803 to photohinibitory intensities of orange-red light. Plant physiology and biochemistry, 132: 524-534
5.Alphen P, et al. 2018. Increasing the Photoautotrophic Growth Rate of Synechocystis sp. PCC 6803 by Identifying the Limitations of Its C*tion. Biotechnology Journal 13(8): 700764
6.Sarayloo E, et al. 2018. Enhancement of the lipid productivity and fatty acid methyl ester profile of Chlorella vulgaris by two rounds of mutagenesis. Bioresource Technology, 250: 764-769
7.Mitchell M C, et al. 2017. Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii. Journal of Experimental Botany, 68(14): 3891-3902
8.Hulatt C J, et al. 2017. Polar snow algae as a valuable source of lipids? Bioresource Technology, 235: 338-347
9.Jouhet J, et al. 2017. LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation. PLoS ONE 12(8): e0182423
10.Angermayr S A, et al. 2016. Culturing Synechocystis sp. Strain PCC 6803 with N2 and CO2 in a Diel Regime Reveals Multiphase Glycogen Dynamics with Low Maintenance Costs. Appl. Environ. Microbiol., 82(14):4180-4189
11.Acu?a A M, et al. 2016. A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions. Photosynthesis Research, 130(1-3): 237-249
*您想獲取產品的資料:
個人信息: