女人被暴躁C到高潮容易怀孕吗_国产成人精品一区二区三区视频_国产欧美日韩_德国FREE性VIDEO极品

圖拉揚科技
免費會員
折光儀/折射儀
熔點測試儀
應力儀
旋光儀
振蕩器、搖床
生物顯微鏡
分析天平
離子色譜儀
粉碎儀
X熒光光譜儀
微波消解儀/萃取儀
表面張力儀
酶標儀
洗板機
固相萃取儀
動物呼吸機/麻醉機
細胞破碎儀
細胞融合儀
混勻器
血壓,生物學功能
裂隙燈顯微鏡
超低溫冰箱
行為學,條件作用,迷宮
動物代謝,攝食行為
葉面積儀
植物光合儀
葉綠素儀
植物冠層分析儀
莖桿強度測定儀
葉片溫差儀
植物效率儀
輻射檢測儀
濁度儀
顆粒物分析儀
澄明度檢測儀
片劑厚度儀
凍力測試儀
勃氏粘度計
片劑多用測定儀
藥物融變時限儀
溶出度儀
明膠透明度測定儀
藥物透皮擴散試驗儀
熱源測溫儀
細菌內毒素測定儀
微粒檢測儀
膏藥軟化點測定儀
氮吹儀
運動協調,抓力測試,活動性
顯微鏡載物臺
水果無損分析儀
粉質分析儀
定氮儀
脂肪測定儀
消解儀
纖維測定儀
液相色譜儀
ATP熒光檢測儀
乳品分析儀
粉末性能測試儀
密度計/密度儀
農藥殘留檢測儀
脆碎度測定儀
片劑硬度儀
霉菌毒素測定儀
消化爐
水分活度儀
獸藥殘留檢測儀
食品安全檢測儀
農產品質量安全檢測儀
色度計
厭氧工作站
磁力攪拌器
紫外可見分光光度計
分光光度計
色差儀
紅外水分測定儀
蠕動泵
疼痛,炎癥
測汞儀
原子吸收光譜儀
電泳儀/電泳槽
凝膠成像系統
PCR儀
紫外分析儀
毛細管電泳
極譜儀/伏安儀
微量水分儀
旋轉蒸發儀
粘度計
真空泵
水浴/油浴/金屬浴
氣體檢漏儀
流變儀
微生物采樣器
激光粒度儀
氫氣發生器
氣相色譜儀
卡爾·費休水分儀
崩解儀
滴定儀
PH酸度計
熒光分光光度計
紅外分光光度計
滅菌器/滅菌箱

代謝組學方法闡明蘋果果實對靜態和動態受控氣氛存儲的反應

時間:2020/12/25閱讀:233
分享:
  A metabolomics approach to elucidate apple fruit responses to static and dynamic controlled atmosphere storage
 
  代謝組學方法闡明蘋果果實對靜態和動態受控氣氛存儲的反應
 
  Stefano Brizzolaraa,*, Claudio Santuccib, Leonardo Tenoric, Maarten Hertogd,
 
  Bart Nicolaid,e, Stefan Stürzf, Angelo Zanellaf, Pietro Tonuttia
 
  a Istituto di Scienze della Vita, Scuola Superiore Sant’Anna, Pisa, Italy
 
  b CERM, University of Firenze, Firenze, Italy
 
  c Fondazione FiorGen ONLUS, Firenze, Italy
 
  d Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Leuven, Belgium
 
  e Flanders Centre of Postharvest Technology (VCBT), Leuven, Belgium
 
  f Laimburg Research Centre for Agriculture and Forestry, Ora, Bolzano, Italy
 
  ABSTRACT
 
  The response of apple fruit to storage conditions based on low oxygen protocols depends on their genetic background. In order to elucidate common and divergent processes characterizing the metabolic changes under hypoxia, fruit of two apple (Malus domestica) varieties (‘Granny Smith’, GS, and ‘Red Delicious’, RD) were stored under two different low oxygen protocols (Ultra Low Oxygen, ULO, at 0.9 kPa oxygen, and Dynamic Controlled Atmosphere based on chlorophyll fluorescence, DCA-CF, between 0.2 and 0.55 kPa oxygen) for up to 200 and 214 days of storage for GS and RD samples, respectively. Through an integrated metabolomics approach (1H NMR, GC–MS, HS-SPME-GC–MS analyses) a total of 130 metabolites (volatiles and non-volatiles) were identified. Most of them (117) were common to both c*rs; 95 were significantly different between both c*rs when comparing the whole set of data (ULO + DCA-CF), whereas 13 volatile compounds, identified via HS-SPME-GC–MS, were specific for either GS or RD. M*riate analyses (PCA and PLS) of the whole dataset allowed to clearly discriminate between GS and RD samples. When storage condition was used as a categorical response variable, a lower percentage explained variance was obtained as this effect was overshadowed by the large effect of storage time. After 4 months of storage, RD underwent more pronounced metabolic compositional changes of the cortex, possibly associated with the evolution of ripening. Based on the accumulation pattern of pyruvate- derived metabolites (ethanol, acetaldehyde, lactate, alanine) it can be hypothesized that there are two main metabolic reconfiguration strategies in GS and RD to regenerate NAD+ and cope with energy crisis under hypoxia. GS showed more pronounced responses through changes in the nitrogen metabolism and limited induction of the ethanol fermentation while the latter was highly induced in RD under both ULO and DCA-CF. Marked differences were detected between the VOC profiles of the two c*rs regardless storage conditions. Ethyl esters and 2-methylbutyl derivatives appeared finely modulated by the oxygen level in GS and RD apples, respectively.
 
  蘋果果實對低氧貯藏條件的反應取決于其遺傳背景。為了闡明在缺氧條件下代謝變化的共同和不同過程,兩個蘋果品種(Granny Smith,GS和Red Delicious,RD)的果實在兩種不同的低氧條件下貯藏(超低氧,ULO,0.9Kpa氧氣,以葉綠素熒光為基礎的動態控制大氣,DCA-CF,0.2-0.55kpa氧氣),分別對GS和RD樣品進行長達200天和214天的儲存。通過綜合代謝組學方法(1hnmr、GC-MS、HS-SPME-GC-MS分析),共鑒定出130種代謝物(揮發物和非揮發物)。其中大多數(117個)是兩個品種共有的;在比較整個數據集(ULO+DCA-CF)時,兩個品種之間的95個顯著不同,而通過HS-SPME-GC-MS鑒定的13個揮發性化合物,對GS或RD都有特異性。整個數據集的多變量分析(PCA和PLS)可以清楚區分GS和RD樣本。當存儲條件被用作分類響應變量時,由于存儲時間的巨大影響掩蓋了這一影響,因此得到的解釋方差百分比較低。貯藏4個月后,RD的皮層代謝成分發生了更明顯的變化,可能與成熟的進化有關。根據丙酮酸代謝產物(乙醇、乙醛、乳酸、*)的積累模式,可以推測GS和RD有兩種主要的代謝重構策略來再生NAD+,應對缺氧下的能量危機。GS通過氮代謝的變化和乙醇發酵的有限誘導而表現出更明顯的響應,后者在ULO和DCA-CF兩種條件下均在RD中被高度誘導,兩個品種的VOC譜在不同貯藏條件下存在顯著差異。在GS和RD蘋果中,乙酯和2-甲基丁基衍生物分別受到氧含量的精細調節。
 
  Keywords:Hypoxic metabolism,Ultra low oxygen (ULO),Dynamic controlled atmosphere (DCA),Malus domestica,Postharvest,Metabolic profiling
 
  關鍵詞:低氧代謝、超低氧(ULO)、動態控制氣氛(DCA)、蘋果、采后、代謝譜

會員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

X
該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時間回復您~
在線留言